DIY robotics and sensors on the Commodore computer:
practical projects for control application

by John Billingsley, 1984

ISBN 0 946408 30 0

CHAPTER 8
Interfacing a Robot

A fully-fledged robot has seven degrees of freedom, that is to say it requires
seven independent motors to drive it. The ‘end effector’ (a fancy term for
‘hand’) must be able to move in three dimensions, and for any given posi-
tion it should be able to swivel about three more axes. A further channel is
needed for ‘open’ or ‘close’, although this is often a simple on/off valve
working a pneumatic gripper. Educational robots, such as the Armdroid,
sacrifice one of the ‘wrist’ axes, but give continuous grip movement. This
reduces the number of channels to six. If these are driven by stepper
motors, how can we interface them to the computer? In the last chapter,
two channels of stepper motor were interfaced to the user port with the use
of all eight bits, so for six channels we must find some new technique to
command them all. It is necessary to include an address as part of the
user-port data, which can be decoded within the robot itself.

Multi-stepper control

The user port provides eight bits: a stepper motor needs four bitsto definea
half-step position (unless you are happy interfacing using the scale of three:
N, off, S). That leaves four bits for housekeeping. From three of these
bits, an address can be constructed to address eight channels. The
addressed channel will now capture the motor signals in a four-bit latch,
and carry on driving the motor lines until told to do otherwise. Now we
need a ‘strobe’ signal as well, so that we can tell the circuitry ‘the motor
lines have finished changing, the address lines are settled, catch this data
now and use it’.

The connections to the somewhat ageing Armdroid on which the pro-
grams of this chapter have been tried out are as follows:

PBO PBI1 PB2 PB3 PB4 PBS PB6 PB7
Strobe = --—-- Channel------ N E w S

Note that the ‘compass’ bits are shuffled in comparison with the last
chapter, and so the data statements for the codes are different. Putting the
‘channel’ bits in a shifted position does complicate the code calculation a
little, but everything comes out in the wash.

81

Since the strobe will be active when low, the procedure for outputting a
new command is as follows:

Look up the code for the desired motor position.

Add on 2*(channel number), hold the result in CO, say.
. Set the strobe bit (bit 0) high in CO.

. Output CO to the user port.

- Set bit 0 of CO low; output CO to the user port.

. Set bit 0 of CO high again; output CO to the user port.

NV AU =

Putting the algorithm into software

Let us adopt our usual technique of defining data and arrays ‘up in the
sky’, with housekeeping at 10000:

10000 DD = 59459:PO =59471:KB = 547:KO = 255:REM ANTIQUE

10000 DD =59459:PO =59471:KB = 166:KO = 255:REM 8000, 4000
PET % 3k Kk

10000 DD =56579:PO =56577:KB = 197:KO = 64 :REM
COMMODORE 64 *##%%

10010 DIM DR(7): REM DRIVE VALUES WITH STROBE ALREADY
HIGH

10020 FORI=0TO 7: READ J: DR(I)=16*J + 1: NEXT

10030 DATA 1,3,2,6,4,12,8,9: REM N-E-S-W

10040 MA =254: POKE DD,255 :REM SET TO OUTPUTS

Now we can look at a subroutine for driving one of the motors. If the
channel number is set in variable CH, whilst the step angleis held as value V
(measured as number of steps from the switch-on position), then the foll-
owing routine will output the required code to the motor:

9000 CO=DR(V AND 7)+ CH*2

9010 POKE PO,CO: REM OUTPUT THE CODE, STROBE BIT HIGH

9020 POKE PO,CO AND MA :REM ‘AND’ WITH MASK — STROBE
LOW

9030 POKE PO,CO: REM STROBE HIGH AGAIN

9040 RETURN

This routine takes one or two short cuts from the algorithm above, and will
simply set up one motor drive to command a given position.

Troubleshooting the connections

For the Armdroid’s end of the connections, you will have to refer to the
handbook — the edge-connector has been modified in recent issues. If you
have constructed your own circuit (perhaps from the one given later in this
chapter) then it should already be familiar to you.

Apart from reassuring yourself that something will really happen, the
next test will establish which channel numbers control which axes of the
robot, and in which direction. Enter the following simple test program.
Since it will get progressively overwritten as you work through the chapter,
you might like to save it at each stage for future use.

10 GOTO 10000
100 INPUT ““CHANNEL NUMBER, DISTANCE”’:CH,DI
110 FOR V=0TO DI STEP SGN(DI)
120 GOSUB 9000:NEXT
130 GOTO 100
10900 GOTO 100:REM AT END OF HOUSEKEEPING

Now check out each of the channels in turn, entering values from 0to 7 for
the channel number, and around 50 or — 50 for the distance. Two of the
eight possibilities will of course have no effect, since only six channels are
used. Make a careful note of the axis and the direction, in terms of up,
down, pivot left, right, forwards, backwards, gripper open and close. The
Armdroid uses two motors at a time to rotate the wrist, and to swivel the
wrist up and down. Make a note of which does which. A program with a
machine-code output routine can afford the time to unscramble separate
commands to twist and tilt the wrist. In BASIC, this makes the system
rather slow, so here we will at first drive just one motor at a time.

Keypress commands

Now let us add a routine so that holding down a key will drive a motor. It is
important to display a menu of keys on the screen, showing which key does
what — nothing is more frustrating than having to guess. To get smart-
looking upper and lower cases legends, put the machine into lower-case
mode before typing in the program. Of course, when listed in this mode all
the commands in the software will appear in lower case, but it is clearer to
show them here in the usual capitals.

Now we must allocate a key to each movement, up, down, left, right,
forwards, back, open and close, plus wrist up and down and rotate. The
keys U, D, L, R, F, B, O and C are obvious enough as choices, but we must
choose four more for the wrist — how about W, Q, T and Y? To each key
will correspond a channel number and a direction. We must add a set of
data statements to the housekeeping to sort them out — use your results

from aboveto correct the values below, to give the correct movements. The
values given here are the ones which Richard has sorted out for his particu-
lar Armdroid:

10100 DIM CH(5),HE(5):FORI=0TO 5:READ J

10110 CH(I)=2*J:NEXT:REM CHANNEL CODES

10120 DATA 1,3,5,4,2,6:REM U/D, L/R, F/B, O/C, WRIST
10130 C$=““UDLRFBOCWQTY’’:REM COMMAND KEYS

You should swap the pairs of letters in C$ as necessary so that the first
corresponds to a positive direction, the second negative. The array HEre(I)
is used to remember the current position of each motor, and will become
very useful later. Now we patch in a routine at 1000 to display the menu,
read the keypress, interpret the command and execute it:

1000 PRINT CHR$(147); ““Up Down’’
1010 PRINT*“Left Right”’

1020 PRINT*‘Forward Back”’

1030 PRINT*“‘Open Close”’

1040 PRINT*“Wrist — Q”

1050 PRINT*““Twist — Y”

1100 GET A$:K = PEEK(KB):IF K = KO OR A$ = “** THEN 1100

1150 FOR I=1TO LEN(C$):IF A$< >MID$(C$,1,1) THEN
NEXT:GOTO1000

1160 J=I:1=LEN(CS$):NEXT: REM CLOSE LOOP NEATLY

1170 CH =INT((J-1)/2):DI =2%(J AND 1)—1:V = HE(CH)

1180 V=V + DI:GOSUB9000:REM TAKE A STEP

1190 IF PEEK(KB) =K THEN 1180:REM KEEP STEPPING IF
PRESSED

1200 HE(CH) = V:GOTO1000

To make this work, we need to change line 9000 to make use of our channel
unscrambler:

9000 CO=DR(V AND 7)+ CH(CH)

We must also remove the old 100—130, writing instead:

100 PRINT CHR$(14):GOTO 1000

As it now stands, the program should run reasonable quickly. There is,
however, a very simple dodge to speed it up a little. To access a variable,

BASIC must scan down the list of variables in the order that they were first
encountered until it comes to the correct one. Thus the variables declared

earliest will operate the fastest. Looking through the program, we see that
CO, PO, V, DI, CH, KB and K are used every step, some several times. If
we change line 10 to the strange-looking form:

10 DIM CO,PO,V,DI,CH,L,R,KB,K:GOTO 10000

then there should be a satisfying increase in speed. (I and R have been
included for later use.)

Programmed movements

When every move must be controlled from the keyboard, therobotis justa
toy. If, however, we can program into it a sequence of movements which it
can perform automatically, then we can start to explore its serious use. We
therefore need to be able to record each target point, and we need a second
command level which will let us switch between the ‘teach-mode’ section
(the program we have already tested) and the routines which will drive the
robot automatically. For this, we use a second menu starting at line 100:

100 PRINT CHR$(147);‘‘Teach, Perform,”’
110 PRINT ¢‘Repeat, Clear,”
120 PRINT ‘‘Save, Input”’

130 GET AS$: IF A§="THEN 130: REM WAIT FOR A KEY-PRESS

140 FOR I=1TO 6:IF A$< > MIDS$(‘“TPRCSI’’,1,1) THEN
NEXT:GOTO100

150 J=1:I=6:NEXT: REM CLOSE THE FOR...NEXT LOOP
NEATLY

160 ON J GOTO 1000,5000,5100,2000,6000,7000

So far, we have only written the ‘teach’ routine at 1000, and even this needs
some modification. We must allow the selection of any point to be added to
the manoeuvre, and we must allow a return to command mode. We there-
fore fill in the gaps in the program with:

1060 PRINT“‘Point End teach”

1110 IF A$=“E’’ THEN 100

1120 IF A$< > ““P”’ THEN 1150

1130 IF NP =MP THEN 1000:REM TOO MANY POINTS

1140 NP=NP+ 1:FOR I=0 TO 5:PT({,NP)=HE(]):NEXT:GOTO
1000

Now for some more housekeeping. The array PT(5,MP) must be declared
to hold the points. The limit, MP, can conveniently be set at 20, but if you
wish you can choose a much bigger number.

10300 NP =0:MP =20:DIM PT(5,MP)

To keep track of progress, we can display the present coordinates and the
number of points set with:

1080 PRINT:PRINT NP;*‘POINTS”’
1090 FOR 1=0TO 5:PRINT HE(I):NEXT

That completes the teach mode section of the program. We are left with the
task of writing the routine to perform the set of actions.

Routines to perform a manoeuvre

Having remembered the moves, we can perform them by looking up target
points in turn, and then calling a routine at 8000 to move from HEre(I) to
TArget(l). If we wish to perform them just once, then we can GOTO 5000,
and:

5000 IF NP =0 THEN GOTO 100:REM NO POINTS
5010 FOR P=1TO NP

5020 FOR [=0TO 5:TA(I)= PT(P,[):NEXT

5030 GOSUB 8000

5040 NEXT P

5050 GOTO 100

If we wish to repeat the cycle until a key is pressed, then we can use a section
of program at 5100:

5100 IF NP =0 THEN GOTO 100

5110 FORP=1TO NP

5120 FORI=0TO5

5130 TA(I)=PT(P,I):NEXT

5140 GOSUB 8000

5150 NEXT P

5160 GET A$:IFA$=“"THEN 5110: REM NO KEY, ROUND AGAIN
5170 GOTO 100

This has still not resolved the problem of what to put at 8000. For best
speed of response, we will at first move just one axis at a time, although we
will go on to consider diagonal movements. After declaring the array
TArget(5) with:

10200 DIM TA(S)

we can compare each channel of TArget against HEre, and, if necessary,
move accordingly.

8000 FOR CH=0TO 5

8010 IF TA(CH)=HE(CH)THEN NEXT:RETURN

8020 FOR V=HE(CH) TO TA(CH) STEP SGN(TA(CH)-HE(CH))
8030 GOSUB 9000:NEXT:HE(CH) = TA(CH)

8040 NEXT:RETURN

Now, to complete the command routines we can add a ‘clear’ one-liner:
2000 NP=0:GOTO100

and we should also add routines at 6000 and 7000 to record and retrieve a
set of movements. For now, plus the lines with:

6000 GOTO 100
7000 GOTO 100

and create your own routines when you have checked out the rest of the
program.

As it stands, the program will act as a quite acceptable robot driver, but
the execution of the manoeuvres, one axis at a time, will seem inelegant. It
would be far better to interpolate the movements with all axes firing
together. Unfortunately, the program which follows in the next section is
excruciatingly slow in its performance, and the only really satisfactory way
to achieve the result is by using machine code.

Simultaneous movements

We want a routine which will set up all six channels of the robot, and will
interpolate a manoeuvre so that all channels can be made to move at once.
This is another task for the binary-rate-multiplier, this time firing on six
cylinders. Our starting position is HEre, an array with six elements, one for
each motor axis. The destination is held in TArget, and we can work
through all six axes, finding which one demands the greatest change. Now
itisastraightforward job to calculate the ratios, and to make a step accord-
ing to the overflow of a REgister, just as in the last chapter. We need some
more arrays along the way, and the housekeeping routine at 10200
becomes:

10200 DIM TA(5),RA(5), WA(5),RE(5)
10210 FOR CH=0TO 5:HE(CH) = 0:RE(CH) = .5
10220 V =0:GOSUB9000:NEXT:REM ZERO MOTORS

Now we can write a subroutine to move all six channels from HEre to the
TArget position:

8000 REM MOVE FROM HERE TO TARGET : FIRST FIND LONG-
EST MOVE

8010 RM=0:FOR CH=0TO 5

8020 RA(CH)=ABS(TA(CH)-HE(CH)):REM WORK OUT DIS-

TANCE AND

8030 WA(CH)=SGN(TA(CH)-HE(CH)):REM DIRECTION FOR
EACH AXIS

8040 IF RA(CH)>RM THEN RM=RA(CH):REM FIND MAX
DISTANCE

8050 NEXT:IF RM=0THEN RETURN : REM NO MOVE

8060 FORCH=0TO S5

8070 RA(CH)=RA(CH)/RM:NEXT:REM RATES NOW IN
RANGEOTO1

8100 FOR R=1TO RM: REM NOW WE ARE READY TO MOVE
8110 FOR CH=0TO 5

8120 RE(CH)=RE(CH)+ RA(CH)

8130 IF RE(CH)< 1 THEN 8160

8140 RE(CH)=RE(CH)-1:HE(CH)=HE(CH) + WA(CH)

8150 V = HE(CH):GOSUB 9000 :REM MOVE MOTOR

8160 NEXT CH

8170 NEXT R

8180 RETURN : REM NOW HERE = TARGET

Lines 8100 to 8180 are written with the aim of being easy to understand.
Some improvement in speed can be made at the expense of clarity. After
trying the first version, try substituting this:

8100 FOR R=1TO RM:FOR CH=0 TO 5:1=RA(CH):IF I=0 THEN
8130

8110 I=I+RE(CH):IF I< Il THEN RE(CH) = I:NEXT:NEXT:
RETURN

8120 RE(CH)=I-1:V=HE(CH)+ WA(CH):HE(CH) = V:GOSUB 9000

8130 NEXT:NEXT:RETURN

8140—8180 are now redundant and should be deleted.

Evenif you use only the program listed here, you will be able to teach the
robot a routine which it will perform with interpolated movements. I still
don’t claim that the execution will be fast — you will soon want to perform
the binary-rate-multiplier functions in machine code, and include a ramp

+5v

¢ 1 U H'\c;x lku'tol:
PO —¢ SN 74.L$0
Pl d w p_______'i{>,,&_, Channel @ strobe.
Pz 5 " ‘: l: - é_
£ 7D
+5v byt }—————{ ~SO—-
C‘*‘M‘-‘-UE o }~_—si>g——0\mt5 sbrobe
r_—(J(Can(.‘_‘)
Ov
P3 T
£ o
i
4] S} 12] 13
C‘;ﬁ"& SN 74-LS 175 '1 v
Stabe | Qued Lateh |2 X6 channels
2| 7)ol s (Ca.u.6€ uftag>
] 2| 3] ¢| s—Ov :Dw/{ikjfokfw.s:
I Tavuhg n i"l""l"’“ :é
i "l"ll'*llsl al—4i4v 3y
G 3
s v 1z
+i4v N E S W ? N
Motov

Figure 8.1 Circuit for 6-axis robot — decoder, latches, drivers

speed-up routine to achieve top speed without breaking away. Some
elegant programs (eg MEMROB, written in collaboration with Tim Dadd
and distributed by Colne for using an Armdroid with a PET) link the inter-
polation and output functions to the computer’s interrupt, and communi-
cate between BASIC and machine code by planting values in an array of
variables. In this way, the BASIC part can do its ‘thinking’, working out
the speed ratios for the next move at the same time as the present move is
being made. Thelisting of MEMROB has baffled multitudes, and has little
teaching value.

Building your own robot

You will first need half-a-dozen stepper motors. The ID35 mentioned in
the last chapter will do nicely — it is the one used in the Armdroid. The
Darlington drivers have been covered pretty thoroughly in Chapter 6. That
leaves only the channel decoders and the four-bit latches — and the power
supply. The supply detailed in Chapter 1 should be adequate, and will cost
less than a single stepper motor. A circuit diagram for the ‘innards’ of the
robot is drawn in Figure 8.1, and this should do all that you need.

For a do-it-yourself mechanical design, you can either follow close on
the heels of the commercial robots, or you can be more adventurous. When
you start to examine the number of ways you can link six motors together,
the choice is amazing. Your geometry can be cartesian, polar, cylindrical-
polar or a variety of strange hybrids. Let us start by looking at the ‘conven-
tional’ robots.

Robot anatomy

The first axis of movement is a rotation of the whole assembly about the
vertical. You can ‘humanise’ this by thinking of it as swivelling about the
waist. Next, the shoulder joint allows the arm to tilt up and down, so that,
using these two motors alone, the hand could reach any point on the
surface of a sphere. Next comes the elbow joint. As this bends, the arm is
effectively shortened, although the hand now moves in a way which needs
more and more trigonometry to describe it. In principle, the robot should
now be able to reach any point within a sphere, but if, for example, the
upper arm is not the same length as the forearm, there will be some unrea-
chable zones. The wrist joint should now be able to swivel both up-and-
down and left-to-right. The Unimation Puma instead uses a movement like
the human wrist, where the up-and-down hinge is an axis which can in turn
swivel about the line of the forearm. The Armdroid leaves one of these
movements out. Now the Puma can in effect line up a screwdriver with a
screw in any position; the final axis twists the screwdriver to drive the
screw.

Figure 8.2 Axes of a ‘conventional’ robot

Forearm 14 not

votated b
Shoulder/move

//' stv'mﬁ wmfru(rowm{
o\ ae—— equal leleys

Prve

Motor

Figure 8.3 Stringing to obtain parallel forearm movement

Figure 8.4 Cartesian robot arrangement

Figure 8.5 A variation on the ‘Gadfly’

Some sophisticated robots, such as the Puma, perform laborious
computations, allowing the user to specify that the hand should move in a
straight line and that the tool should not rotate in space. New positions are
calculated for the motor axes up to forty times per second, and the
movement is then smoothed out by ‘rate control’, similar to the techniques
described earlier. It is a challenging exercise to try!

Even when the geometry is settled, there are many ways to connect the
motors to the axes. The Puma uses brute force, so that the entire leverage
of the arm and its load will appear at the shoulder joint. The Armdroid on
the other hand uses a cunning bit of string-work, so that as the shoulder
rotates the upper arm, the forearm remains parallel to its former position.
This effectively halves the leverage of the load on the shoulder motor —
although it does not do alot for the string which is annoyingly apt to break.

The IBM robot is cartesian, and bears a strong resemblance to an over-
grown graph plotter for controlling the X and Y axes. The Z axis is an even
more overgrown pen-lift, raising and lowering a bar which can rotate to
provide the first of the wrist axes. All the problems of straight-line
movement are solved at a stroke, but tracks and pulleys are now needed in
place of pivots and levers.

When computing power is let loose, anything goes. Considerable
industrial research is being put into developing a device using six extending
rods, driven by motors and leadscrews. Imagine a triangle ABC fixed to the
floor, with the tool attached to a movable triangular plate DEF. The plate
isheld up by sixrods AE, AF, BF, BD, CD and CE. As these varyinlength,
so the plate can be moved in three dimensions and rotated about three axes.
If you have an idle moment, calculate the relationship between the lengths
and the position of the plate, or more especially the lengths required to
place the plate in any particular position — a prize is offered for the
simplest solution! No wonder it is called the ‘Gadfly’.

These variations hardly scratch the surface of the possible combin-
ations. If you connect up the six stepper motor channels, you can try any
number of ‘lash-ups’ using cardboard, string and balsa wood before
immortalising your design in aluminium or steel. Good luck!

Robot Control Program

NB. Change line 10000 if using a PET.

io0 pIm ca,POo,v,DI,CH,I,R,KB,K: GOTO 10000

100 PRINT CHR#%(147): " TEACH, PERFORM, "
110 PRINT"REPEAT, CLEAR"
120 PRINT"SAVE, INFUT™

130 GET A%: IF A$="" THEN 130:REM AWAIT KEYPRESS

140 FOR I=1 TO &

145 IF A$<>MID$("TFRCSI",I,1) THEN NEXT:GOTO 100
150 J=I:1=6:NEXT: REM CLOSE °FOR® LOOF NEATLY
160 ON J GOTO 1000,5000,5100,2000,6000,7000

1000
1010
1020
1030
1040
1050
1060
1080
1090
1100
1110
1120
1130
1140
1145
1130
1153
1160
1170
1180
1190
1200
2000
5000
35010
5020
5030
3040
5050
5100
5110
35120
5130
5140
5130
5160
5170
&000
7000
8000
8010
8020
8030
8040
8050

FRINT CHR$(147);"UF DOWN™
PRINT"LEFT RIGHT™®
PRINT"FORWARD BACKWARD™
PRINT"OPEN CLOSE"
PRINT"WRIST - @"

PRINT"*TWIST - Y*®

PRINT"POINT END TEACH™

PRINT:PRINT NF; "POINTS"

FOR I=0 TO S:PRINT HE(I): NEXT

GET A$:K=FEEK(KR):IF K=KO OR A$=""THEN 1100
IF A$="E" THEN 100

IF A$<>"P"THEN 1150

IF NP=MP THEN GOTO 1000:REM TOO MANY FOINTS
NFE=NP+1

FOR I=0 TO S:PT(NF,I)=HE{(I):NEXT:G0TO 1000
FOR I=1 TO LEN(C$)

IF A$<>MID$(C%,1I,1) THEN NEXT: GOTO 1000
J=1: I=LEN(C$): NEXT:REM CLOSE LOOP NEATLY
CH=INT((J-1)/2): DI=2%(J AND 1)-1: V=HE (CH)
v=V+DI:GOSUR 2000: REM TAKE A STEF
IF PEEK(KR)=K THEN 1180: REM KEEP STEPFING
HE (CH) =V:60T0O 1000

NF=0:60TO 100

IF NP=0 THEN GOTO 100: REM NO POINTS
FOR P=1 TO NP

FOR I=0 TO 5: TA(LI)=PT(F,I): NEXT

GOSUB 8000

NEXT F

GOTO0 100

IF NF=0 THEN GOTO 100

FOR P=1 TO NP:PRINT P3

FOR I=0 TO 5

TA)=PT(P, 1)z NEXT

GOSUB 8000

NEXT P

GET A$:IF A%="" THEN 5110

G60TO 100

GOTO 100:REM PUT *SAVE® HERE

GOTO 100:REM PUT *INPUT” HERE

REM MOVE FROM HERE TO TARGET

M=0: FOR CH=0 TO 5

RA (CH) =ABS (TA (CH) —HE (CH))

WA (CH) =5GN(TA (CH) —HE (CH))

IF RAC(CH) *RM THEN RM=RA(CH)

NEXT: IF RM=0 THEN RETURN: REM NO MOVE

8060 FOR CH=0 TO 3

8070 RA(CH)=RA(CH) /RM: NEXT

8100 FOR R=1 TO RM

81035 FOR CH=0 TO S5:I=RA(CH):IF I=0 THEN 8130
8110 I=I+RE(CH):IF I<1 THEN RE(CH)=I:NEXT:RETURN
8120 RE(CH)=1-1: V=HE{(CH)+WA(CH): HE(CH)=V

8125 GASURBR 2000

8130 NEXT: NEXT: RETURN

2000 CO=DR(V AND 7)+CH(CH)

2010 FOKE FO,CO:FPOKE FO,CO AND MA:POKE PO,CO
F020 RETURN

10000 DD=56579:P0=56577:kB=197:K0=64: REM CBM 64
10010 DIM DR(7): REM DRIVE VALUES WITH STROBE HI
10020 FOR I=0 TO 7: READ J: DR(I)=1&%*J+1: NEXT
10030 DATA 1,3,2,6,4,12,8,9: REM N-E-5-W

10040 MA=254: FOKE DD, 255: REM SET TO OUTPUTS
10100 DIM CH(S),HE(S): FOR I=0 TO 5: READ J
10110 CH(I)=2%J: NEXT: REM CHANNEL CODE
10120 DATA 1,3,5,4,2,6

10130 C$="UDLRFBOCQWTY": REM COMMAND KEYS

10200 DIM TA(3),RA(D) ,WA(S) ,RE(S)

10210 FOR CH=0 TO 3: HE(CH)=0: RE(CH)=.5

10220 v=0: GOSUB?000: NEXT: REM ZERO THE MOTORS
10300 NP=0:MF=20:DIM FT(5,MP)

10200 GOTO 100

Simple Driver and Channel Identifier

NB. Change line 10000 if using a PET.

10 GOTO 10000

100 INPUT"CHANNEL NUMBER,DISTANCE";CH,DI

110 FOR V=0 TO DI STEP SGN(DI)

120 GAOSUB 9000: NEXT

130 GOTO 100

2000 CO=DR(V AND 7)+CH#»2

9010 POKE PO,CO:FPOKE PO,CO AND MA:POKE PO,CO
F020 RETURN

10000 DD=3565772:P0=36577:KB=197:K0=64: REM CBM &4
10010 DIM DR(7): REM DRIVE VALUES WITH STROBE HI
10020 FOR I=0 TO 7: READ J: DR(I)=16&6%J+1: NEXT
10030 DATA 1,3,2,6,4,12,8,9: REM N-E-G-W

10040 MA=254: POKE DD, 255: REM SET TO OUTPUTS
10900 GOTO 100

